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SUMMARY 
Certain free surface flows exhibit in nature negligible vertical accelerations and as a result the pressure within 
the fluid remains hydrostatic. The method of characteristics is developed as a solution technique for the 
integration of the partial differential equations describing this kind of flow. The equations are integrated 
over the depth to provide a two-dimensional model which is then tested and validated by comparing its 
results with tide-induced flows occurring in a number of cases where either analytical or observational data 
are available for comparison. On the basis of the results of the 2D model, a finite difference 3D model is 
developed which provides the values of the unknown velocities u, u and w along the three axes x, y and z. 
This combined 2D-3D model is verified by applying it in cases of wind-induced flow inside closed or open 
basins for which the classical Ekman solution may be used as a testing means. 
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Wind-induced flow 

INTRODUCTION 

There are certain flow occurrences in nature which exhibit negligible vertical accelerations 
compared with gravity and as a result operate in an almost horizontal plane. In such a case the 
equation of momentum conservation along the z-axis leads to a hydrostatic pressure distribution 
within the fluid. Thus the general partial differential equation system describing the nearly 
horizontal flow of an incompressible and homogeneous fluid becomes 

au au aw 
ax ay aZ -+-+-=O (continuity), 

where x, y and z are Cartesian co-ordinates, t is the time variable, u, u and w are the particle 
velocities along the axes x, y and z respectively, 5 is the surface elevation above the mean level 
(Figure l), A,, A ,  and A ,  are eddy viscosity coefficients, g is the acceleration due to gravity, R is 
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Figure 1. Co-ordinate system and basic notation 

the Coriolis parameter (Q = 2 0  sin $, where 0 = 0.000073 rad s-  is the angular frequency of the 
earth‘s rotation and $ is the latitude) and DIDt=a/at+ua/ax+ua/ay+wa/az is the total 
derivative. 

The equations above may be integrated over the depth using the appropriate boundary 
conditions at the bottom and the free surface, giving eventually the following result: 

au au au 
at ax ay 
-++-++-=- 

where h is the mean water depth (Figure l), p is the sea water density, 

U=-judz 1 and V=- h+c Iudz  
h+c 

are the depth-integrated velocities, z,, and zsy are the sheaf stress components at the free surface 
along the axes x and y respectively, zbx and q , y  are the corresponding shear stress components at 
the bottom and D, and D, are eddy diffusivity coefficients taking into account not only the 
horizontal diffusion of momentum but also the non-uniformity of the velocity over the depth, the 
so-called ‘shear’ effect. 

This is introduced in the equations by the depth integration of the non-linear convective terms 
on the left-hand side of equations (1). Indeed, if we assume that the velocities u and u are 
represented as the sum of the mean values U and V and the residual terms u’ and u‘, then for the 
first of the momentum equations (1) we have for example 
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a 
s u  dz + dz = f ( U  + u'),(U +u')dz + 

where the products of the residuals u' and u' have been approximated as shear terms, i.e. 

au 
U'O' dz = Dy - . f ax I aY 

au 
u'u' dz = D, - and 

The bottom stress q, is usually expressed as a fbnction of the mean velocity in one of the 
following ways: 

Tbx - 'by (a) linear: --cu and -=CV, 
P P 

C 
and k=r V. 

(b) semilinear: ?bx - - C -- 
P h  P h '  

9 (3) 
(c) non-linear: t b x -  u J ( u ~ +  v2) t b y  vJ(u2+ V2) 

C2 
and -=g c2 P 

-_ 
P 

where C is the friction coefficient. 

a quadratic function of the wind velocity W, i.e. 
The surface stress rS is usually exerted by the shear of the blowing wind and is expressed as 

L X  -=CD WW, and 2 = C D  WW,, 
P P 

(4) 

where CD is the dimensionless coefficient of wind friction and W, and W, are the wind velocity 
components. 

The depth-integrated equations (2) (2D model) are the well-known 'shallow water' equations of 
nearly horizontal flow under the assumption of hydrostatic pressure and have found widespread 
use over the years for the simulation of long-wave propagation (tides, storm surge, seiche, 
tsunamis, etc.). Their numerical integration in both space and time has been carried out more or 
less successfully by implementing all sorts of numerical techniques (finite difference, finite element, 
ADI, etc.), although it is true to say that there are still some problems concerning in particular the 
simulation of the non-linear terms of the equations.' 

The solution of equations (1) (3D model) is obviously a more intractable task, let alone the 
considerable amount of computational work involved. However, three-dimensional calculations 
have already been attempted, starting with the pioneering work of Heaps2 and followed by 
Leendertse and Liq3 Forristall? Nihoul,' Owen,6 Koutitas and O'C~nnors,~ Heaps,* Burg 
et ~ 1 . , ~  Benque et al.," Furnes," Davies," etc. A recent collection of relevant papers can be found 
in Reference 13. 

In the following a new finite difference scheme based on the method of characteristics is 
presented for the integration in both two and three dimensions of the partial differential 
equations describing a nearly horizontal flow. Two specific cases are examined which comply 
with the basic assumption of negligible vertical acceleration and hydrostatic pressure, i.e. (a) the 
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flow induced by the action of tidal forces and (b) the flow induced by the action of wind over sea 
areas of shallow depth. The first kind of flow is used as a test case for the characteristics 2D 
scheme, while the second is used for the 3D characteristics scheme. 

In the latter case the solution is achieved in two steps. In the first step the 2D model is solved to 
provide the value of the free surface elevation [. In the second step the gradients a[/ax and a[/ay 
are introduced as known quantities in the three-dimensional equations (l), which are then solved 
to provide the values of u, u and w in the directions x,  y and z. This solution procedure relies on 
the fact that the free surface elevation should be nearly the same whether calculated by a depth- 
averaged or a purely three-dimensional scheme." 

The combined 2D-3D model is tested and validated by comparing its results with known 
analytical solutions, serving to demonstrate the efficiency of the method of characteristics for the 
calculation of a nearly horizontal flow in two or three spatial dimensions. 

THE METHOD OF CHARACTERISTICS 

The fundamentals of the method of characteristics can be found in the classical work of Courant 
et al l4  Its development as a solution technique for the simulation of equations (2) has been given 
by Butler" and also by Daubert and Graffe.16 In the following we summarize their main 
conclusions. 

From the mathematical point of view equations (2) form a non-linear hyperbolic system of 
partial differential equations in three independent variables x,  y and t .  The main distinction of 
a hyperbolic system is the existence of characteristics. By definition, a characteristic in m inde- 
pendent variables is a subspace of m- 1 dimensions across which discontinuities in the solution 
surface may occur and thus the solution on a characteristic cannot be analytic. 

In our case there are three independent variables. Therefore any characteristic surface will 
depend on two space variables x and y in the functional form t = p ( x ,  y )  or the equivalent 
parametric form x = x ( t )  and y = y ( t ) .  In order to establish the function j, we first write the 
shallow water equations (2) in matrix form as 

aA aA a A  
- + A ,  - + A ,  -=B ax ay  9 at 

where 

and 2 = h + [ is the total depth. 
Let us assume that the solution of matrix equation ( 5 )  is of the type A = A ( x ,  y ,  t )  and the 

solution A. at a point M ( x o , y o ,  to )  lying on a characteristic surface is known. Then 
A(x,  Y ,  t )  = A(x ,  Y ,  B(x, Y ) )  = A .  and 

aAo aA aAag  aAo aA aAag  
ax ax at ax ay ay at ay  +--. -=- +--, -=- 
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P I =  

Equations ( 5 )  and (6) comprise a system of three equations in three unknowns, i.e. the 
derivatives of the solution surface at the point M, aA/ax, dA/ay and aA/at. This system must have 
no solution, otherwise an analytical solution could be established in the neighbourhood of 
M using, for example, the values of these derivatives and a Taylor formula. This would contradict 
the basic assumption that M lies on a characteristic surface. In this respect equations (5 )  and (6) 
may be rewritten as 

RX=Y, (7) 
where 

1-up-vq 0 - 9P 
0 1 -up -  vq -94  =o, 
- ZP -zq 1-up-vq 

Since p and q are obviously the components of the normal to the surface j?, each of the 
relationships above defines a characteristic surface. By confining the solution locally, the charac- 
teristic surfaces may be replaced by the tangential planes t = px + qy passing through point M. 

If p=pcoscp and q=psincp, then the first equation of (8) defines the tangential plane 
(x-Ut)coscp+(y- Vt)sincp=J(gZ)t or by differentiation -sincp(x-Ut)+cosrp(y- Vt)=O. 
Eliminating 9 between these two, we obtain 

(x- Ut)2 + (y- Vt)2 =u2t2, (9) 
where a=J(gZ) is the wave speed. 

form 
This equation defines geometrically the so-called ‘characteristic cone’ having the differential 

dx 
-= dt U+acosfp, 9= dt V+asincp, 

where cp is the parametric angle measured anticlockwise (Figure 2). Each value of cp defines 
a generator, i.e. a ‘bicharacteristic’ of the characteristics cone. 

In a similar way the second equation of (8) leads to the parametric form 

1-up 
t=px+- ; Y 9  

which represents planes rotating around the line 

dx dY 
-= U ,  -= v. 
dt dt 

This is in fact the axis of the characteristic cone and defines the path followed by an individual 
particle in a Lagrangian sense, i.e. the so-called ‘particle path’ line. 
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Figure 2. Characteristics cone and particle path line 

Given that R is singular, equations (5 )  and (6) are not linearly independent. Therefore there 
must exist a matrix L with elements 11, l 2  and l 3  such that 

LR = 0, LY=O. (13) 
The first equation of (13) is used to define the matrix L and the second is used to define the 
condition holding along a characteristic surface. 

In the case of the characteristics cone the condition LR = 0 leads to the values l I  = a(cos cp)/g, 
l 2  = a(sin cp)/g and l 3  = 1. Thus the condition holding on any characteristic at angle cp takes the 
form 

dZ  dU dV 
9 -+a dt COS cp-+ dt a sin cp - dt =f, 

ah ) [: (: z) av aY 1 ah f= ag (%cos cp +-sin cp -a2 - sin2cp - - +- sin cp cos cp +- cosz cp 
aY 

+ aF, cos cp + aF, sin cp. 

In the case of the particle path line it is found in a similar way that Il = l 2  =O and l 3  = 1. Thus 
the equivalent characteristic condition is 

This is simply the continuity equation after rearranging its terms and therefore it can be seen that 
the particle path does not lead to a genuine characteristic condition in the same way as the 
bicharacteristics of the characteristics cone. 
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FINITE DIFFERENCE SCHEME 

The region under consideration is divided in space and time (Figure 3) to give a network of 
solution points with co-ordinates iAx and jAy (Ax and Ay are space increments along the axes 
x and y respectively and i and j are integers) where both the velocities U and V and the elevation 
5 are calculated at each time step nAt (At is a time increment and n is an integer). Only values of 
the variables lying on the previous time plane are used in the solution. Thus an explicit-type 
scheme is employed over a non-staggered grid of discrete points. 

Considerations of numerical stability and accuracy of the scheme suggest the use of the 
characteristic conditions (14) at specific values of the angle cp for the construction of the solution, 
i.e. cp=225", 315", 45" and 135", and also along the particle path line." All the bicharacteristics 
are projected backwards in time to intersect the previous time plane at t - At, defining thereby the 
co-ordinates of intersection points 1-5 (Figure 4) relative to the grid point of solution 0, i.e. 

X5 = - UAt, Y5 =- VAt, 
X1 =X5+a(cos45)At, Y1= Y5+a(sin45)At, 
X2 = X5 - U(COS 45)At, Y2 = Y5 + a(sin45)At, 
X3=X5 -a(cos45)At, Y3 = Y5 - a(sin45)At, 
X ~ = X ~ + U ( C O S ~ ~ ) A ~ ,  Y4= Y5--u(sin45)At, 

where points 1-4 are the intersection points of the four bicharacteristics with the time plane and 
point 5 is the intersection of the particle path line (Figure 4). As a first approximation the values of 
U, V and a at point 0 are used in the expressions above but calculated at the previous time level. 

The characteristic conditions (14) along these five characteristic lines contain only total 
derivatives on their left-hand side and may be directly approximated by forward differences, 
providing five equations for the construction of the solution in the following way: 

I -1 line i i + l  

Figure 3. Grid construction and cone projection on (x, y) 
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Figure 4. Explicit construction of solution and intersection points 1-5 

z - 2 1  u- u 1  v- v1 
a sin 45 - = f l y  At 

a cos45 ___ - gT- At 

2 - 2 2  u- u 2  V- m 
a sin 45 - - f 2  - 9 + a  cos45 ~ - 

At g-F At 

2 - 2 3  u- u 3  v- v3 
+ a  cos45 ~ +a  sin45 - -f3 - > 9T At At 

2 - 2 4  u- u 4  v- v4 
acos45- + a  sin45 -- -f4 9 gT- At At 

9 7 - -  z - z 5  - aZ(:+g), 

where Z, U and V are the integrated variables located at the apex of the conoid, Z1,22, U1, U2, 
etc. are the values of the variables at intermediate points 1-5 and fi ,  fi, f3 and f4 are the values of 
the quantity f at points 1-4. 

By combining equations (17), partial derivatives are eliminated and the final solution takes the 
simple form 

R1+ R2+ R3 + R4 
2 

R2+ R3- R1- R4 

- r 5 ,  r =  

U =  ( J a g  + Fx A 4  4a 
R3 + R4- R1- R2 

V= (J2)g + FY At, 4a 

where the quantities Rl-R4 (Riemann invariants) are all calculated at the previous time level as 
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and cl, lz, etc. are the values of the elevation 5 at points 1-5. 
The calculation of any variable at these points is carried out by means of an interpolating 

scheme which is equivalent to a Taylor formula taken up to second-oder accuracy. Accordingly, 
the value of any quantity Q at a point (x, y) of the network will be 

Q x , y =  Q i .  j + x L x ( Q )  +0*5x2Lxx(Q)  + yLy(Q)  + 0 . 5 ~  ’ L y y ( Q ) ,  (20) 

where Qi,  is the value of Q at a point of solution O(iAx, jAy) known from the previous time level 
and L,, Ly,  L,,, etc. are finite difference operators: 

Q i +  I ,  j +  Q i - 1 ,  j -2Qi,  j 

Ax Ax Lxx(Q)= 9 

Q i ,  j +  1 + Q i ,  j -  1 -2Qi. j 

AY AY 
L y y ( Q ) =  

As a result the final solution (18) is expressed in terms of the values of the variables C, U and 
Vat grid points only. 

Two kinds of boundary points are recognized within the model area: those lying along the 
coastline (closed boundary points) and those on a line connecting with the open sea (open 
boundary points). At closed boundary points U or V (or both) is taken as zero depending on the 
orientation of the boundary line inside the model, while along the open boundary points specific 
conditions must be applied according to the nature of the problem at hand. For example, if tidal 
flow is simulated, then the surface elevation is usually prescribed at the open boundary as 
a sinusoidal function of time, i.e. C= A cos(ot), where A is the wave amplitude, o = 27c/T is the 
angular frequency and T is the tidal period. 

The space increment is usually taken in practical applications to be the same along the x- and 
y-axis, i.e. Ax = Ay = As. 

Furthermore, if accuracy analysis is carried out, the solution scheme of equations (18) is found 
to be of second-order accuracy in both space and time, while stability analysis imposes the 
following two criteria for the numerical stability of the scheme: 

2c 
(b) At=----- 

R 2 + C Z ’  
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where C is a linear friction coefficient for the bottom shear stress (equations (3)). 
Condition (a) reduces to the well-known CFL criterion for stability, 

aAt 1 -< As 3' 
if the non-linear convective terms on the left-hand side of equations (2) are omitted. 

TIDAL FLOW 

The periodical phenomenon of tides is now used to check the efficiency and accuracy of the 
proposed characteristics scheme (equations (18)) for the simulation of the two-dimensional, 
depth-averaged, nearly horizontal flow. This is necessary because the scheme will be used inter 
a h  for the solution of the three-dimensional equations (1) as well. This is demonstrated in the 
following section. 

The tidal waves generated in nature by the action of the planetary forces exhibit extremely long 
periods and wavelengths. As a result their propagation, even in regions of large water depths, 
takes place in an almost horizontal plane and under 'shallow water' conditions, which means that 
the fluid pressure remains virtually hydrostatic. Therefore the mathematical description of such 
a propagation in two spatial dimensions is adequately provided through equations (2). 

The tidal flow established inside a straight, orthogonal channel of constant depth with 
a reflecting wall at its end may be used as a first elementary test case for the characteristics scheme 
(18), since the solution in this case is a simple standing wave of elevation 

5 = 2A cos(kx) cos(at), (25) 

where A is the tidal amplitude at the entrance of the channel, a=2n/T is the angular frequency of 
the tide, x is the distance measured from the end towards the mouth of the channel and k = 2n/L is 
the wave number. 

Under linear conditions and without taking into account free surface and bottom friction stress 
and the Coriolis effect, equations (18) become in finite difference form 

Starting with initial tidal elevations those of the analytical solution above at HW time, 
equations (26) produce numerical elevations which are very close to the analytical values of (25) 
(Figure 5). The other details of the applied scheme are as follows: As = 1965 m, At = 162 s, A =  2 m, 
h = 15 m. As is also predicted by (25) above, the numerical scheme verifies that there is no phase 
lag in the solution, HW elevations occurring simultaneously along the length of the channel. 

However, it seems that the analytical solution developed by Lynch and Gray'* for the tidal 
flow occurring in channels of a quarter-annular configuration and a bathymetry varying accord- 
ing to h=hor", where ho is a constant, r is the radial distance and n is an integer (Figure 6), has 
become the standard test case for the performance of numerical schemes of any kind solving the 
two-dimensional tidal equations. 
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Figure 5. Tidal wave in an orthogonal channel of constant depth 

RADIAL DISTANCE 

Figure 6. Channel of quarter-annular configuration and quadratically varying depth-HW and maximum elevations 
along a radius 

For comparison reasons, the test cases employed by Lynch and Gray’’ have been adopted 
herein referring to three different sea bed configurations: (a) a constant depth of 9 m (30 ft) (n =O); 
(b) a linearly varying depth from 6 m (20 ft) at r = r l  to 15 m (50 ft) at r = r z  (n= 1); (c) a quad- 
ratically varying depth from 3 m (10 ft) at r ,  to 18.75 m (62.5 ft) at rz  (n=2) .  The other details of 



390 P. F. C. MATSOUKIS 

the scheme are as follows: Ar= 15 km (5 x lo4 ft), r l  =4Ar, r 2 =  10Ar, linear friction coefficient 
C =  

Three different grid sizes have been tested with a view to demonstrating the convergence 
qualities of the characteristics numerical scheme: (a) A s = A r  (grid 1); (b) As=Ar/2 (grid 2); 
(c) As=Ar/4 (grid 3). The stability conditions (22) and (23) were used each time to define the 
proper value of the time increment At. 

As expected, the results are found to be circumferentially identical and the numerical solution 
converges towards the analytical one as the space increment As is reduced. In the case of 
quadratically varying water depth the best performance is achieved with grid 3 either with or 
without friction (Figures 6 and 7) for both elevations and velocities (Figure 8). In the case of 
a constant or a linearly varying water depth the analytical solution is already attained with grid 2 
(Figure 9). 

The ability of the characteristics scheme to describe adequately the main features of a two- 
dimensional tidal flow is further demonstrated by its application in a case of practical civil 
engineering interest, i.e. for the simulation of the tide occurring in the Bristol channel, one of the 
greatest in the world. 

The area under consideration, having a maximum water depth of 40 m, is covered by a network 
of 39  x 31 = 1209 grid points using a space increment As=4 .5  km. The M 2  tidal constituent is in 
particular examined and tidal data are interpolated from Tide Tables and Admiralty Charts to be 
introduced along the open boundary line of the model in the form of a sinusoidal variatioq of the 
elevation with the proper phase value. Under these conditions the stability criteria lead to a value 
of the time increment At equal to 81 s, while a universal value of the non-linear Chezy coefficient 
C = 30 milZ s-  is applied everywhere in order to simulate correctly the tidal ranges observed, 
particularly in the shallow waters of the region. 

The model must run for a total time of three tidal periods so that a periodic solution is 
established at the end and this requires a CPU time of 4.5 min on a microVAX I1 computer. 

Numerical results are presented in the form of co-range and co-tidal lines (i.e. lines of equal 
range and equal tidal phase) and these are favourably compared with observed values provided 
by British Admiralty Chart No. 5058 (see Figures 10 and 11). 

s - l ,  tidal period T =  12.4 h, amplitude 0.03 m (0.1 ft) at r = r 2 .  

r 
L 

u 

I 
-ANACTTICAL 
AGRID 1 
OGRlD 2 
OGRlD 3 

9 
1 2 3 4 5 6  
RADIAL DISTANCE 

Figure 7. Channel of quarter-annular configuration and quadratically varying depth-frictionless case 
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Figure 8. Velocity diagram along a radius-HW time at r = r2 
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Figure 9. Quarter-annular channel of constant and linear depth-HW elevations 

WIND-INDUCED FLOW 
The vertical distribution of the tidal current is usually found to have a logarithmic form and thus 
the relationships established by (3) may be considered as a valid expression of the shear stress at 
the bottom. However, this is not true for a wind-induced flow, i.e. a flow generated by the wind 
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Figure 10. Bristol Channel-isolines of equal HW time: 
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Figure 11. Bristol Channel-isolines of equal tidal range: -, observed; ---, calculated 

blowing at the free surface, since it is a well-known fact that in such a case a flow reversal takes 
place along the vertical. Therefore the water masses close to the bottom may be well directed in 
the opposite sense to the mean flow and under these conditions formulation (3) cannot be 
considered as a realistic way to simulate the bottom friction effects. 

To overcome this problem, the shear stress at the bottom is calculated in this work directly 
from Newton’s law of friction, i.e. 
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where the derivatives du/az and au/az are approximated by forward differences using the values of 
u and u calculated by the 3D model. 

The latter takes the following form if the interpolating scheme (20) is introduced in the 
equations and the eddy viscosity coefficients A,, A ,  and A,  are assumed temporarily as constant: 

- U o  At L , ( U [  j , k ) -  Uo AtL,(u,l j , k ) -  W o  At L z ( U [  j , k )  + A,  At L,,(U[ j , k )  + adt U o  + A,&, (28) 
where 

U O  =(u!+ 1, j , k  + u?- 1, j , k  + ut j +  1 . k  + $ j -  l , k ) / 4 ,  

UO =(u?+ 1. j , k  + 0;- 1, j . k  + u! j +  l , k  + ut j -  l . k ) / 4 ,  

W O  =(w?+ I ,  j . k  + w?- 1, j . k  + wt  j +  l , k  + W c  j -  1. k ) / 4 .  

The terms A, and Av depending on the surface gradient are calculated by means of central finite 
differences using the solution provided by the two-dimensional scheme (1 8): 

n . x = - g L ( C t  j ) ,  A y = - g L y ( C [ j ) *  

The vertical velocity w at a depth level z, i.e. w(z), is calculated by integrating the continuity 
equation as 

where the derivatives are approximated by central differences using the 3D solution of u and u. 
Stability analysis of scheme (28)  shows that besides (22) and (23) the following stability criterion 

involving the vertical eddy viscosity coefficient should also be satisfied: 

A,At <0,25Az. (30) 
The conditions which must be necessarily applied at the sea bottom or on any other solid 

boundary for the solution of the equations depend on the assumed values of the eddy viscosity 
coefficients. 

(1)  If A,, A,, A ,  #O, then the no-slip condition is applied, i.e. 

u = u  = w =o. 
(2) If A,, A ,  or A,=O, then a slip condition is applied using, for example, equations (3), where 

the values of the mean flow U and Vmay now be replaced by the values of u and u along the 
boundary under consideration. 

For the calculation of the vertical velocity w a ‘rigid lid’ assumption is made at the free surface, 
i.e. w = 0, or a kinematic boundary condition is implemented through the depth-integrated 
continuity equation (1 5), i.e. 

(31) 
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d{ a2 au av 
w =- =- (-idY). 

dt g ax 

Concluding, the solution of the three-dimensional equations (1) may be seen to proceed in the 

1. Solve the depth-averaged model (2) using the two-dimensional characteristics scheme (18) 
and equation (27) for the calculation of the bottom shear stress. Both the free surface 
elevation ( and its gradients allax and al lay are defined by means of the depth-integrated 
velocities U and V. 

2. Introduce the surface gradient values in the 3D model (28) for the calculation of the values of 
u, v and w. 

3. Using the newly computed values of u and u, calculate the bottom shear stress using (27). 
This is then introduced in the 2D model (1 8) (step 1) for use at the next time level and so on. 

An elementary test of this combined 2D-3D model may be achieved by confining the problem 
to two spatial dimensions x and z. In such a case equations (1) take the following very simple form 
if all non-linear convective, horizontal diffusion and Coriolis terms are omitted 

following way. 

au a( a2u 
-=-g-+ A, - .  
at ax a z z  (33) 

When a steady state is attained, au/at=O, and by introducing the boundary conditions u=O at 
the bottom and A,du/dz = CD WI WI at the free surface, an analytical solution can be derived, 
namely 

In this respect let us consider an open-ended basin of constant depth h = 10 m over which 
a constant wind of 20 m s-  is blowing (Figure 12). The basin is described by 51 points both along 
the x- and the z-axis with space increments A x  = 2.83 m and Az = 0.2 m. The other parameters of 
the problem are as follows: A,=0.0158 m2 s-', CD= 1.78 x 

After a number of iterations the combined 2D-3D model described above leads to a steady 
state according to which the vertical distribution of the velocity u remains constant along the 
x-axis and also in time. The numerical solution provided by scheme (28) under the prescribed 
conditions is compared with the analytical one (equation (34)) in Figure 13, where it can be seen 
that the two solutions are in fact identical. 

Models of this kind are usually validated by comparing their results with the classical Ekrnan'O 

C=OOOl m1I2s-'. 

I ;;-- I 1' 5 

depth h , 
t 

1-1 I 1+1 
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Figure 12. Open basin configuration 
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Figure 13. Vertical distribution of velocity U 

solution for the wind-induced flow generated inside a closed basin of constant depth and constant 
eddy viscosity coefficient by the action of a constant wind. 

Let us consider, therefore, an orthogonal basin closed on all its sides having a length 
L = 200 km, a width B = 100 km and a depth h = 50 m (Figure 14). The space increments along the 
three axes are taken as Ax = A y  = 10 km and Az = 5 m, which means that the basin is described by 
21 x 11 points in the horizontal and by 11 points along the vertical. The wind speed is 15 ms-' 
and the values of the wind, bottom friction and eddy viscosity coefficients CD, C and A ,  are taken 
the same as before. The required CPU time to achieve a steady state is found to be 3 min on 
a microVAX I1 computer. 

If the Coriolis term is omitted and a slip condition is applied at the sea bottom by means of 
a linear law of friction (equation (3)), then an analytical solution of the problem is possible, e.g. the 
one provided by Jamart and Oser." The numerical solution given by (28) is found to be in very 
close agreement with this analytical solution as can be seen in Figure 15, where the time variation 
of the elevation ( at the boundary point x = 0, y = B/2 is depicted up to the point of steady state 
after almost 150 iterations. Obviously, if the value of the space increment As is reduced, then 
a better approximation between the two solutions can be achieved. 

It is interesting to comment on the mean velocity, which according to Ekman must be 
everywhere equal to zero. This velocity is calculated by the 2D model (18) as an unknown variable 
through its components U and I/ (equations (2)), but it may also be calculated by the 3D model 
(28) as the integral of the 3D velocities u and u over the depth (residual velocities). In both cases 
the mean velocity is found by the numerical scheme to be zero at every point of the grid in 
accordance with Ekman's theory. 

Also according to Ekman, the surface current, drawn in Figure 16, is found to deviate to the 
right of the wind direction as a result of the Coriolis force action. The angle of deviation is 
measured as 25" compared with the value of 26" predicted by Ekman, while the maximum current 
is 0.24 ms-' compared with Ekman's value of 0.25 ms-'. 

The isolines of the free surface elevation depicting a constant gradient over the basin are 
produced by the numerical model with a slight deviation to the right for the same reason as 
above, i.e. because of the Coriolis effect (Figure 17). If the Coriolis term is omitted from the 
equations, then the isolines are directed at right angles to the wind direction. The model also 
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Figure 15. Time variation of elevation at x=O, y = B / 2  

shows that the effect of the Coriolis force on the magnitude of the elevation is almost negligible 
and this agrees with Ekman's remark that 'the influence (of earth's rotation) on the absolute 
magnitude of the mounting up is rather moderate'. 

In Figure 18 typical variations over the depth of the velocities u and u are given at the central 
point of the basin for two different kinds of &distribution along the vertical axis. In the first case 
a constant eddy viscosity coefficient is assumed with a value of 00158 mz s - l ,  while in the second 
case a parabolic distribution is introduced with zero values at the free surface at the bottom and 
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Figure 17. Closed basin-isolines of free surface elevation [ 

a maximum at half of the total depth (i.e. h/2) equal to 0.0158 m2 s-’ .  The results of the model 
show that this latter assumption does not lead to a plausible distribution of the velocities. 

The same experiment as above is applied in the case of a basin communicating with the open 
sea along one of its sides. In this case specific ‘absorbing’ conditions must be defined along the 
open boundary line so that any disturbances generated inside the model propagate unhampered 
in the open sea without secondary reflections and other distortions along the boundary line which 
could probably return back and contaminate the numerical solution in the interior. 

The results of such an application are shown in Figures 19-21. The mean velocities are again 
found equal to zero. 

CONCLUSIONS 

The method of characteristics is developed as a finite difference technique for the integration of 
the partial differential equations describing free surface flows propagating in an almost horizontal 
plane with negligible vertical accelerations. 
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Figure 18. Vertical variation of u and u at centre of closed basin: (a) A,  constant; (b) A,  parabolic 
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Figure 20. Open basin-isolines of free surface elevation 

(b)  

Figure 21. Vertical variation of u and u at centre of open basin: (a) A ,  constant; (b) A, parabolic 
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The method has the advantage of transforming the initial set of equations to the so-called 
characteristic conditions valid only along specific lines-the ‘bicharacteristics’. These contain 
only total derivatives and thus may be directly integrated by using forward difference approxima- 
tions. The resulting numerical scheme is of the explicit type and uses a non-staggered grid of 
solution points. 

A two-dimensional, depth-integrated version of the scheme is applied for the simulation of tidal 
flow, which is a typical example of a nearly horizontal flow. Its performance is tested by 
comparing the results with a number of simple analytical solutions, e.g. the one developed by 
Lynch and Graylg for the case of a channel of a quarter-annular configuration and a quad- 
ratically varying depth. The scheme simulates accurately these analytical solutions. Subsequently, 
it is applied for the simulation of a real tide, namely that occurring in the Bristol Channel. The 
numerically produced isolines of tidal range and phase compare favourably with the observed 
values. 

The 2D model is basically used for the calculation of the free surface elevation ( using the mean 
depth values of the velocities U and V. Having done this, the gradient of the free surface is 
subsequently introduced into the three-dimensional equations to calculate the velocities u, u and 
w along the three axes x, y and z. This is achieved by defining the bottom shear stress directly from 
Newton’s law of friction applied at the sea bottom. The partial derivatives involved in the bottom 
shear stress expressions are approximated by forward differences using the 3D solution of u and u. 

This combined 2D-3D model is tested by using examples of wind-induced flow, e.g. that 
established inside a closed basin of constant depth by the action of a constant wind. For this case 
the classical Ekman solution is available for comparison. It is found that the model verifies all the 
main conclusions of Ekman’s theory. 

As a result of the above tests it is finally concluded that the three-dimensional model based on 
the method of characteristics may be considered as a reliable and accurate means for the 
simulation both in two and three spatial dimensions of a nearly horizontal flow under any kind of 
geometry and bathymetry conditions. 
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